The Operational Evaluation of the Navy's Globally Relocatable Tide Model (PCTides)

Ruth H. Preller, Pamela G. Posey and Gretchen M. Dawson
Naval Research Laboratory
MTS Meeting Oct 2002

Outline

- Project History
- System Description
- System Evaluation

History

- The U.S.Navy has a requirement for global tide prediction.
- NRL developed a globally relocatable tide prediction system.
- This system runs on both UNIX and PC platforms and is called PCTides
- PCTides consists of a numerical model and global data bases such that it may be run as a "self-contained" system (no external information required unless wind forcing is used).

PCTides Description

- The core of PCTides is a 2-D barotropic ocean model.
- Data bases internal to the system are: bathymetry, boundary/initial conditions and assimilation data
- Wind forcing is the only external data
- PCTides forecasts tidal elevations, storm surge and barotropic ocean currents.

The PCTides System

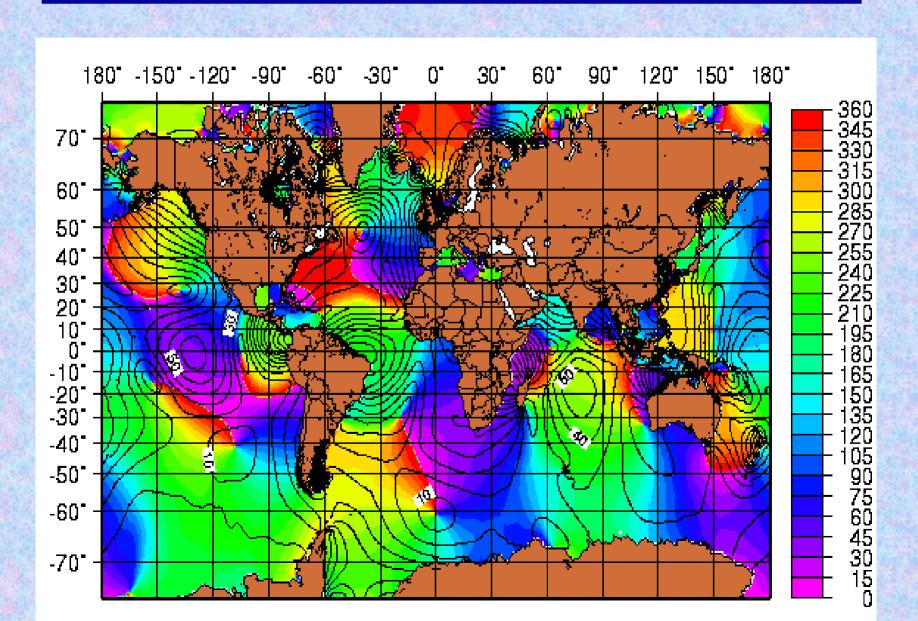
NRL DBDB2 2' Bathymetry

IHO Coastal Tide Station Data Winds/pressures from NOGAPS, COAMPS, DAMPS

Boundary Conditions FES95.1/.2

2-D Ocean Model (Barotropic)

Tidal Heights and Barotropic Ocean Currents


Input Data

- NRL-DBDB2 2 min bathymetry data
 - Composed of DBDBV, ETOPO5, DAMEE (2.5 min), GOM 0.1 deg, Choi (YES-1 min),
 Sandwell (GTOPO2 2 Min), IBCAO (Arctic-2.5 min).
 - Different data sources are smoothly blended.
 - Careful matching with World Vector Shoreline.
- IHO coastal station data: ~4500 global coastal station constituents for assimilation

Forcing

- Winds and surface pressures may be obtained from Navy products:
 - NOGAPS,
 - COAMPS or
 - DAMPS
- Boundary/initial conditions are from the Global Model FES95.1/2

Grenoble Model Adjusted M2 Tide: Amplitude and Phase

PCTides Operation

- GUI based grid generator or manual definition of grid allows set up of a grid and interpolation of bathymetry to that grid (PC/T)
- Tidal boundary conditions placed on the grid (C)
- Stations selected for time series output (T)
- Model parameters set: starting time of run, length of run, data assimilation, winds, frequency of output (T)
- Run model (C)

Model Output

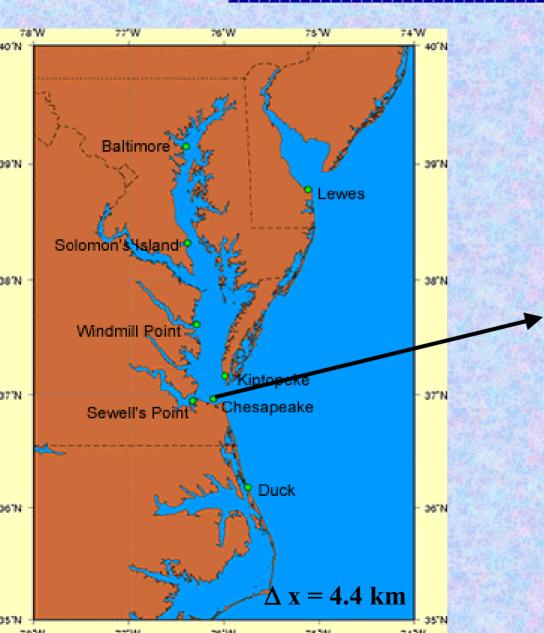
- Time series of tidal height deviation from some datum (e.g. MSL) for preselected locations
- Output at frequencies of 10-15 minutes for preselected stations
- Gridded output at a maximum frequency of 30 minutes.
- Barotropic tidal currents

PCTides OPTEST

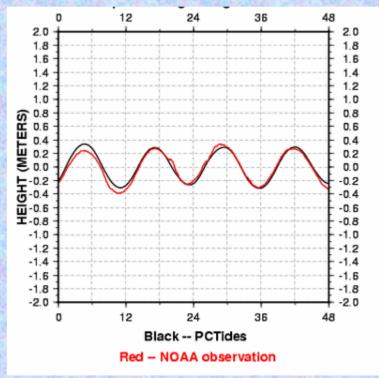
- Prior to operational use, a model must successfully pass an operational evaluation called an "OPTEST".
- PCTides was installed at the Navy's regional METOC centers in Norfolk (NLMOC) and in San Diego (NPMOC).
- The PCTides OPTEST was conducted by these two centers.

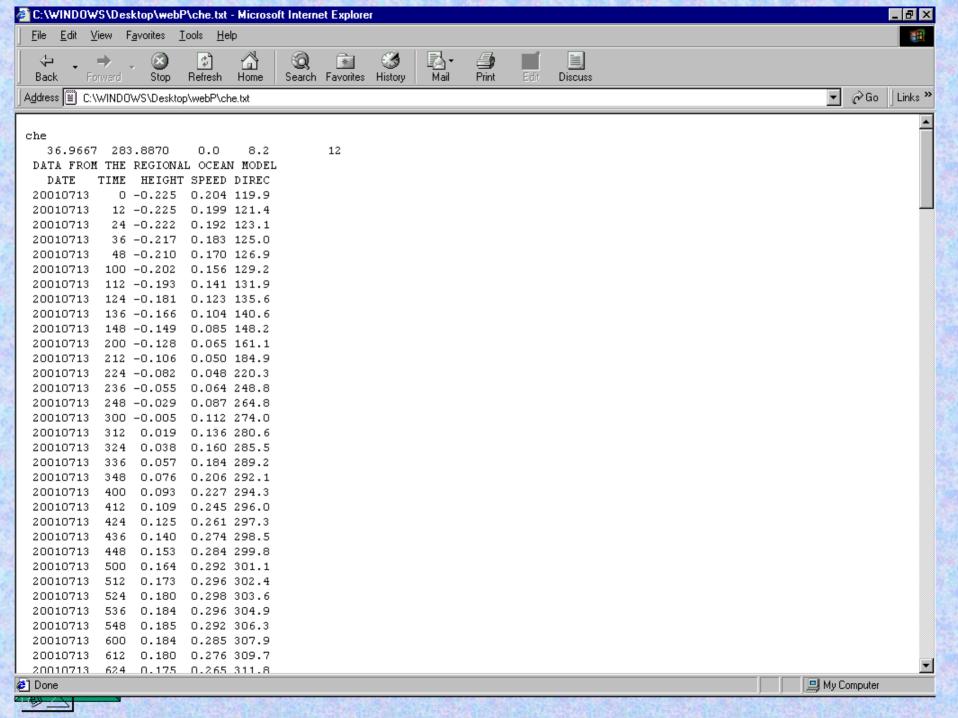
OPTEST Domains

- The following PCTides gridded domains were setup and run for a 3 month OPTEST
 - the US East Coast, Chesapeake Bay region
 - the southern California Coast,
 - the Gulf of Alaska and
 - the Washington State/British Columbia waterways.


OPTEST Forecasts

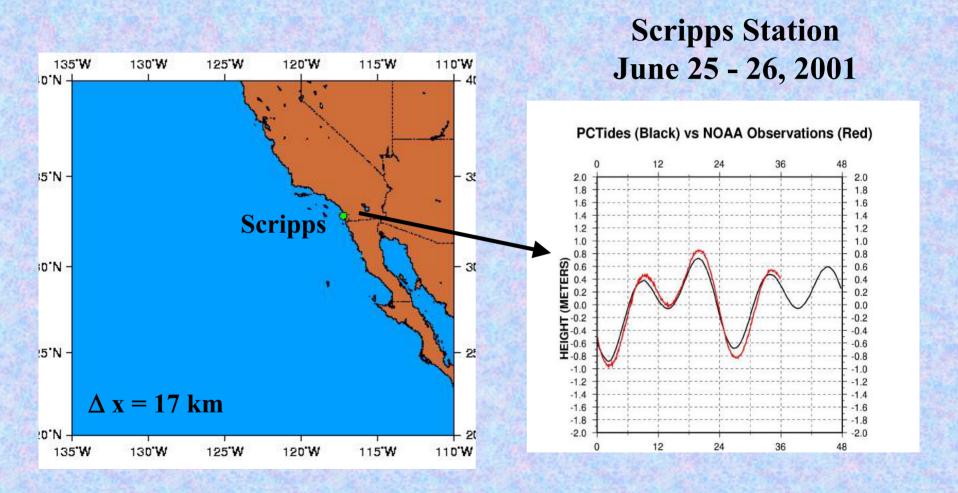
- A daily, 48-hour forecast was made for each domain.
- Forecasts used atmospheric forcing (winds and pressure fields) obtained through Metcast.
- One or more stations were pre-selected in each domain for comparison with observations.
- The daily, 48-hour forecast at each station was saved over the 3 month OPTEST.


PCTides Validation Criteria


- PCTides station output was validated against NOAA sea-level height observations.
- The evaluation criteria were:
 - tidal amplitude error less than 1.2 feet (0.365 meters)
 - tidal phase error less than 45 minutes

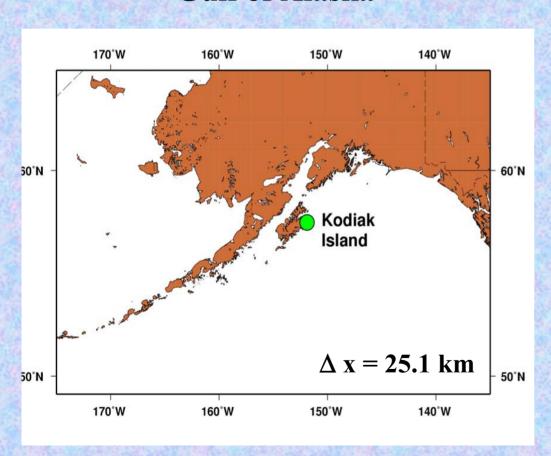
NLMOC OPTEST Region

Chesapeake Station July 11-13, 2001

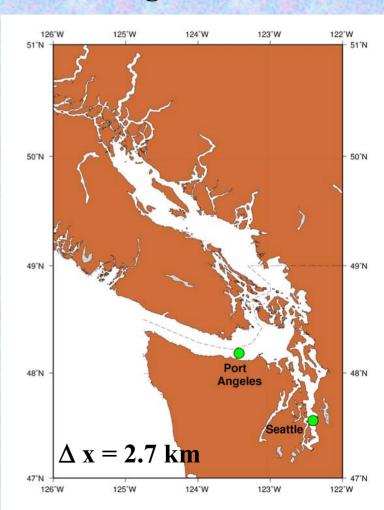

Table 1. First 24-hour forecast comparison PCTides vs NOAA Observations

Station	AME (m)	MPD (min)	RMSA (m)	RMSP (min)
Baltimore	0.28	-31.6	0.32	59.4
Solomon Island	0.10	-40.8	0.14	53.8
Windmill Point	0.08	68.6	0.11	69.2
Sewell's Point	0.09	20.1	0.12	20.8
Chesapeake	0.09	-12.4	0.12	23.7
Kiptopeke	0.09	-5.90	0.12	18.2
Lewes	0.21	2.40	0.24	14.4
Duck	0.10	-9.8	0.13	20.5

U.S. East Coast Evaluation


- In 6 of the 8 pre-selected stations, the model's RMS amplitude error was < 15 cm.
- The other 2 station's RMS amplitude error was < 33 cm.
- 5 of the 8 modeled stations had RMS phase errors < 24 minutes
- The 3 stations with larger phase errors were located in the northern part of the Bay.
- OVERALL phase and amplitude in 5 out of 8 stations passed criteria

NPMOC OPTEST Region



NPMOC OPTEST Regions

Gulf of Alaska

Puget Sound

Table 2. First 24-hour forecast comparison PCTides vs NOAA Observations

Station	AME (m)	MPD (min)	RMSA (m)	RMSP (min)
Scripps	0.10	0.65	0.12	24.28
Kodiak Island	0.22	26.05	0.26	32.62
Port Angles	0.25	-7.73	0.32	25.52
Seattle	0.15	-29.83	0.18	31.09

U.S. West Coast Evaluation

- The modeled RMS amplitude error of all 4 stations was < 33 cm.
- The modeled RMS phase error of all 4 stations was < 35 minutes.
- OVERALL all 4 stations passed the criteria for both amplitude and phase.

Improvements to PCTides

- Based on comments from the OPTEST, several improvements were made to PCTides
 - Output graphics upgraded to "gif" format, for ease of distribution to users
 - Added user capability to include and use highresolution bathymetry datasets
 - Automated process to move pre-selected stations that were on land into the nearest water point
 - Reduced the number of required user decisions

Summary

- Overall, PCTides performed well during its OPTEST meeting 21 of the 24 statistical criteria.
- July 2002 PCTides was delivered for use as a relocatable, tidal prediction system to the Systems Integration Division at the Naval Oceanographic Office.